Incremental Reinforcement Learning with Dual-Adaptive e-greedy Exploration

AN

National Taiwan University

Wel Ding, Siyang Jiang, Hsi-Wen Chen, Ming-Syan Chen
Graduate Institute of Electrical Engineering, National Taiwan University, Taiwan
{wding, syjiang, hwchen}@arbor.ee.ntu.edu.tw, mschen@ntu.edu.tw

1. Introduction 2. Explorer &
Adaptively select least-tried action to explore:
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e Most reinforcement learning frameworks oversimplify the problem by assuming
a fixed-yet-known environment and often have difficulty being generalized to
real-world scenarios. St A §*, A° S3L,A — > e = new states

e \We address a new challenge with a more realistic setting, Incremental o i i i i i i | [T old states
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Reinforcement Learning, where the search space of the Markov Decision 0 S o (80,05 80)) | | | ' ' | |
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e \While previous methods usually suffer from the lack of efficiency in exploring © Agent - | R d q /"
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the unseen transitions, especially with increasing search space, we present a new
exploration framework named Dual-Adaptive g-greedy Exploration (DAE) to woo0 | [— AND
address the challenge of Incremental RL. NoisyNet
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e Specifically, DAE employs a Meta Policy and an Explorer to avoid redundant 4 00000 softmax
computation on those sufficiently learned samples. o e-greedy >
e Furthermore, we release a new testbed based on a synthetic environment and £ = DaRloury ’
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the Atari benchmark to validate the effectiveness of any exploration algorithms W’—
under Incremental RL. ; . . . . .
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e Experimental results demonstrate that the proposed framework can efficiently #dimensions training steps
learn the unseen transitions in new environments, leading to notable

verformance improvement, i.e., an average of more than 80%. [llustration of Expanding World and the training overhead. The change of £;and the relative frequency.
2. Problem Formulation 5. Incremental Atar
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uple M= (S, A, T, R) Method . . ® \We carefully select 14 games with
e S: state space best final best final . i
o A acti _ different levels of difficulty, each of
. T %Cxizn Sp}a:z:g) oo e RL Rainbow 9.9/ 5.02 3.42 2.46 which has 18 meaningful actions.

' ’ . . i ® Only six primitive actions are

e R:Sx A — r, predefined reward function Incremental | Rainbow 3.23 3.23 2.11 2.11 . tiill;xa?/a:ila:bll\cle to enable the agent
o V. _(s) max Q.(s,a) = E | 2ZoV 1:lso = s] (1) DAE 6.11 6.11 3.97 3.97 to play the games.
® Qn(st; at) — :R(St; at) + Y amaX Qn(5t+1; at+1) (2) Mean human-random normalized returns ___Median human-random normalized returns ® Therest 12 advanced actions are

randomly divided Into three groups
and added Into the environment
sequentially.

® \We report the mean and median
episodic reward.
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® Finetune the previous policy for M’ based on and against default trajectory
® Hard exploration problem (could be seen as initialization bias)

t+1~A — : .
Incremental Reinforcement Learning | = Rainbow J 01 == Rainbow
+{ === Rainbow+DAE(ours) ! 251 === Rainbow+DAE(ours)

3. Dual-Adaptive e-greedy Exploration 6. First-Visit Visualization
MountainCar GridWorld Labyrinth MultiRoom
.  Explorer qu 1 argmin &(als;) &t = ¥(se) P N ® We further evaluate the exploration efficiency of DAE
of | 5 0 a ; R Meta . for general RL via conducting the First-Visit
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® These tasks show the state coverage of an exploration
algorithm and how quickly it can discover all of the

1. Meta Policy ¥ states.

Adaptively make a trade-off between exploitation and exploration:

& = W(s;),s.t.0 < W(s;) <1,Vs; €5 (3)
The meta policy ¥ Is a deep learning model with one output neuron and sigmoid
function.
This behavior is fashioned into a binary classification problem with pseudo label
1 defined as:

® Specifically, the number of steps the agent takes to
discover, 1.e., first visit, each state are recorded and
visualized into heat maps.

® Blue and green areas take fewer steps to be reached,
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1,if TD — Error rate > t whereas yellow and red areas take more times.
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