Incremental Reinforcement Learning with Dual-Adaptive ε-greedy Exploration

Wei Ding, Siyang Jiang, Hsi-Wen Chen, Ming-Syan Chen Graduate Institute of Electrical Engineering, National Taiwan University, Taiwan {wding, syjiang, hwchen}@arbor.ee.ntu.edu.tw, mschen@ntu.edu.tw

2. Explorer Φ

Adaptively select least-tried action to explore:

$$\Phi(a|s_t) \sim RF(a|s_t), s.t., \sum \Phi(a|s_t) = 1, \Phi(a|s_t) \ge 0, a \in \mathcal{A}$$

, where we refer to the underlying occurrence of each action as RF (relative frequency). The explorer is a deep model with softmax activation function. RF of taken action is raised by gradient ascend with loss function defined as the log probability of that action.

real-world scenarios.

- We address a new challenge with a more realistic setting, **Incremental Reinforcement Learning**, where the search space of the Markov Decision Process continually expands.
- While previous methods usually suffer from the lack of efficiency in exploring the unseen transitions, especially with increasing search space, we present a new exploration framework named **Dual-Adaptive ε-greedy Exploration (DAE)** to address the challenge of Incremental RL.
- Specifically, DAE employs a **Meta Policy** and an **Explorer** to avoid redundant computation on those sufficiently learned samples.
- Furthermore, we release a **new testbed** based on a synthetic environment and the Atari benchmark to validate the effectiveness of any exploration algorithms under Incremental RL.
- Experimental results demonstrate that the proposed framework can efficiently learn the unseen transitions in new environments, leading to notable performance improvement, i.e., an average of more than **80%**.

	5. Incremental Atari					
		Mean		Median		• Arcade Learning Environment
	Method	best	final	best	final	 We carefully select 14 games with different levels of difficulty, each of which has 18 meaningful actions.
RL R	Rainbow	5.57	5.02	3.42	2.46	
		2.02	2.22	0.1.1	0 1 1	Only six primitive actions are

2. Problem Formulation

Markov Decision Process & Q-learning

- tuple M = (S, A, T, R)
- S: state space

• A: action space

• $T: S \times A \rightarrow P(S)$, transition function

R: S × A → r, predefined reward function
V_π(s) = max Q_π(s, a) = E_π[∑[∞]_{t=0} γ^tr_t|s₀ = s] (1)
Q_π(s_t, a_t) = R(s_t, a_t) + γ max Q_π(s_{t+1}, a_{t+1}) (2)
Incremental Reinforcement Learning
M' = (S', A', T', R')
S ⊂ S', A ⊂ A', T ⊂ T', R ⊂ R'
Finetune the previous policy for M' based on and against default trajectory
Hard exploration problem (could be seen as initialization bias)

1. Meta Policy Ψ

Adaptively make a trade-off between exploitation and exploration: $\varepsilon_t = \Psi(s_t), s. t. 0 \le \Psi(s_t) \le 1, \forall s_t \in S$ (3) The meta policy ψ is a deep learning model with one output neuron and sigmoid function.

suanzeu mito neat maps.

• Blue and green areas take fewer steps to be reached,

whereas yellow and red areas take more times.