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ABSTRACT
Federated Learning (FL) has emerged as a prominent paradigm
for distributed machine learning, crucial for mission-critical appli-
cations such as autonomous driving and smart health. However,
existing FL systems have not adequately addressed the dynamic real-
time requirements of these applications due to stringent inference
deadlines and resource limitations on edge devices. In this paper, we
propose ArtFL, a novel federated learning system designed to sup-
port dynamic runtime inference through multi-scale training. The
key idea of ArtFL is to utilize the data resolution, i.e., frame resolu-
tion of videos, as a knob to accommodate dynamic inference latency
requirements. Specifically, we initially propose data-utility-based
multi-scale training, allowing the trained model to process data
of varying resolutions during inference. Subsequently, we intro-
duce an innovative strategy for frame resolution selection in infer-
ence, based on the similarity of adjacent frames. Finally, leveraging
latency-based dynamic data dropping, we propose a systematic
scheme to reduce the overall training time by shortening the wait-
ing time in FL. For evaluation, we build two real-world FL testbeds
for smart vehicles and healthcare applications, utilizing a heteroge-
neous edge platform. Extensive experiments across our testbeds and
three public datasets show that ArtFL outperforms state-of-the-art
baselines in overall accuracy and system performance up to 36.36%
and 47.81%, respectively. A demo video of ArtFL on our smart vehi-
cle testbed is available at https://youtu.be/eeK6yRVEG3U, and our
code is available at https://github.com/siyang-jiang/ArtFL.git.
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1 INTRODUCTION
Federated Learning (FL) is increasingly adopted in real-time edge
applications like autonomous driving [48] and smart health [46].
However, these applications pose two challenges that current FL
systems have not addressed. First, during inference, tasks running
† denotes equal contribution, � corresponding author.

on edge systems usually impose stringent real-time requirements.
A typical real-time deadline for autonomous driving tasks, such as
lane-keeping assistance and traffic sign recognition, is ~30 ms (e.g.,
33 fps) for each RGB image [61]. Meeting this tight deadline be-
comes even more challenging due to compute resource contention
from other tasks on edge devices. For example, the traffic sign recog-
nition task on a smart vehicle may not immediately access the GPU
recourse for inference due to other preemptive high-priority tasks
such as passing vehicle detection. The second challenge arises from
the system and data heterogeneity that is commonly observed in
FL systems. An FL system may consist a large number of clients
which may update the network model in an online manner. How-
ever, the local training time of these clients may vary significantly
due to differences in compute and communication resources, and
the amount of available training data. As a result, faster clients
may waste time waiting for slower clients, resulting in a prolonged
training duration. The advantages of minimizing the wait time can
be illustrated by autonomous driving, where updating car aboard
models typically needs to be complete with an idle period, such as
overnight parking.

Previous efforts in machine learning (ML) systems primarily
focused on improving the inference efficiency via model design
techniques, such as early exit [12, 21, 52], multi-networks [8, 31, 57],
quantization [14, 53] and weight pruning [22, 28]. These techniques
are applicable to FL systems for users’ privacy preserving. However,
these designs either do not adapt to users’ different requirements on
inference latency and accuracy [28, 53], or increase the storage over-
head of the model [12, 57]. Multi-resolution inference [24, 33, 57]
is a promising approach to mitigate the above issues, by dynami-
cally adjusting the frame resolution for vision-based tasks during
inference. Moreover, considering the training and inference as two
closely coupled stage, multi-scale training [11, 24] is shown to be
effective in centralized training setting.

However, previous FL systems mainly focused on the training
stage without jointly optimizing the training and inference to adapt
to users’ dynamic inference requirements. In addition, it is not
trivial to directly adapt the multi-scale training from centralized
learning to federated settings due to a catastrophic performance
dropping, as shown in Sec. 2.2. To tackle the system and data
heterogeneity commonly present in FL systems, several methods
[25, 29, 29, 32, 35, 46, 49, 59] have been proposed. Oort [29], Pyra-
midFL [32], and FedBalancer [49] reduce the training duration via
either client or sample selection. In addition, FedProx [35], Scaf-
fold [25], and FedDyn [1] introduce additional loss terms as reg-
ularization to align the heterogeneous distribution across clients.

https://youtu.be/eeK6yRVEG3U
https://github.com/siyang-jiang/ArtFL.git
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However, these methods are not designed to minimize the waiting
time, which can be a substantial part of the total training duration.

In this paper, we propose ArtFL, a novel FL framework that
facilitates dynamic runtime inference through multi-scale federated
training. The key idea driven by the understanding that the data
resolution can be exploited to achieve desirable trade-offs between
learning latency and accuracy. In particular, we first propose data-
utility-based multi-scale training, which leverages the data utility
from clients to guide the selection of training sample resolution.
It allows clients to learn scale-invariant features, which are then
effectively aggregated by the server. Next, upon model convergence,
an optimal frame resolution selection scheme is adopted to choose
the suitable resolution for each frame, aligning with the dynamic
real-time requirements based on the similarity of adjacent frames..
Lastly, to mitigate the increasing of waiting time, we propose a
systematic scheme, named latency-based dynamic data dropping,
which determines the amount of data to be dropped in subsequent
training rounds based on empirical training time.

To evaluate ArtFL, we build two testbeds, including an F1/10
smart vehicle testbed and a smart health testbed for patient ac-
tivity monitoring using heterogeneous devices, including Nvidia
Jetson Orin, AGX Xavier, Xavier NX, TX2, and Nano. In addition,
we also evaluate ArtFL on a GPU server involving three public RGB
image datasets (CIFAR10, CIFAR100, Tiny-ImageNet). Extensive
experiment results show that ArtFL significantly outperforms sev-
eral existing federated learning paradigms in accuracy and incurs
less training overhead under dynamic real-time requirements. In
particular, ArtFL largely outperforms other existing systems and
improves the overall accuracy accuracy and system performance
up to 36.36% and 47.81%, respectively.

2 APPLICATION AND MOTIVATION
2.1 Application Scenarios
ArtFL can be applied to various distributed systems where each
client consists of a camera and an edge compute unit and collab-
orates with other clients to learn a deep learning model while
preserving the raw data privacy and reducing the training expense.
We now use autonomous driving as a representative example to
discuss the application of ArtFL [61]. For instance, a group of smart
vehicles can form an FL system that learns the unseen knowledge
from other clients and avoids the overfitting issue while each client
only uses local data for training [44]. Due to the time-critical na-
ture and the high compute overhead of autonomous driving tasks,
existing autonomous cars such as Tesla [9] or XPeng [47] have
to be equipped with several high-end edge devices, i.e., NVIDIA
Jetson Orin [45]. For example, serving a real-time object detection
task with RetinaNet [38] in single stream mode needs 8.19 FP32
TFLOPS [45], which poses a heavy workload for even high-end
devices like Orin. Another major challenge is that during inference,
the computing resources available for a real-time task are typically
dynamic due to other preemptive tasks with higher priority. For
example, the typical traffic sign recognition task deadline is ~30
ms (e.g., 33 fps) of each inference. Higher-priority detection tasks,
such as collision detection, may preempt or interrupt the execution
of lower-priority tasks, such as traffic sign recognition. To handle
such dynamics, a task should be able to adjust its execution delay at
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Figure 1: Amotivation study. Left: A range of the accuracy and
inference latency trade-offs. Right: The result of adopting
direct evaluation and two vanillamulti-scale approaches, e.g.,
temporal and spatial multi-scale training.

runtime. As another example, in the presence of an imminent safety
threat, an autonomous driving system may increase the sampling
rate of onboard sensors while requiring the same level of accuracy,
resulting in a tighter deadline for learning tasks. However, achiev-
ing such latency-accuracy adaptivity is highly challenging since
the current approaches train deep models with a constant level of
accuracy by fixing model parameters and structure, leading to a
fixed inference latency. ArtFL aims to address the above challenges
by adaptively tuning the frame resolution during the inference to
meet the dynamic real-time requirement. Moreover, thanks to the
specifically designed FL training scheme, ArtFL not only achieves
the adaptive frame resolution tuning during inference with minimal
accuracy loss but also provides high FL training efficiency.

2.2 A Motivation Study
Trade-off between the accuracy and latency. Reducing input
resolution is one of the most effective methods for visual tasks to
enhance inference efficiency [24]. Shown in the left part of Fig. 1,
we train and evaluate three different depth neural networks under
different scale resolutions (32 × 32, 16 × 16, 8 × 8). This experiment
observed that using ResNet 101 and the original size for inference
presented a considerable challenge for NVIDIA Jetson Xavier in
achieving an inference latency lower than 100ms, i.e., a frame rate
of >10 fps. However, using medium and small frame resolutions
effectively achieved the required real-time performance. In partic-
ular, the smaller resolution reduces inference time from 100𝑚𝑠 to
30𝑚𝑠 , with an accuracy reduction from 92% to 70%. In summary, the
data resolution provides models significant room for the trade-off
between accuracy and real-time performance.
Effect of training and inference resolution discrepancy. As
discussed above, the reduction of input resolution has been identi-
fied as an effective means of achieving a considerable speedup while
minimizing accuracy degradation. Consequently, prior works [21,
60] have employed dynamic resolution tuning during inference.
However, we show that directly scaling original data into a medium
or small resolution during inference time is not viable in federated
learning. In particular, we trained a neural network using high-
resolution data and directly evaluated its performance among three
resolutions. As shown in (Directly Eval Bar) of Fig. 1 (right part),
we observed a reduction in accuracy of up to 30% when using small
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resolution in inference, with 𝐷𝑖𝑟=0.3 which is a widely used param-
eter to control the data non-i.i.d. level in federated learning [34].
This result is commonly referred to as the training and testing
resolution discrepancy, as discussed in [54]. During training, the
model acquires features under specific resolutions, often poorly
transferable to different resolutions employed during inference.
Therefore, a unified framework that can effectively handle such
different resolutions for inference is necessary.
Challenges of multi-scale training in FL.Multi-scale training
has been shown effective in centralized training [24, 33, 57]. How-
ever, adopting a multi-scale technique in federated learning is not
trivial. For example, we integrate two vanilla multi-scale techniques
from both spatial and temporal perspectives. In the temporal multi-
scale training (T-MST), we use three different resolutions, i.e., small,
medium, and large, and one of these resolutions is sequentially
chosen to train the neural network after an aggregation. For spatial
multi-scale training (S-MST), we assigned different frame resolu-
tions to separate clients during the training process. Specifically,
we have partitioned the clients into three equal groups with small,
medium, and large resolutions. As shown in Fig. 1 (right part), our
empirical evaluation reveals that both methods suffer from substan-
tial accuracy degradation on high resolutions. This result illustrates
the challenge of directly incorporating multi-scale training into FL.
The phenomenon we are observing can be primarily attributed to a
well-acknowledged limitation in neural networks known as cata-
strophic forgetting. In particular, within the context of the T-MST,
the intricacies of this issue come to the forefront. As the network is
exposed to input data at varying resolutions over time, the newly
acquired features at higher resolutions tend to overwrite the founda-
tional knowledge that the network initially learned from the lower
resolutions. This results in the erosion of previously established
patterns and a degradation in the network’s ability to recall earlier
learned information. Similarly, in the S-MST scenario, a parallel
but distinct form of forgetfulness manifests. When multiple clients
are involved, each client’s neural network specializes in processing
data at specific resolutions. However, when these networks are
required to integrate and generalize across different resolutions
handled by other clients, they often fail to retain the feature repre-
sentations learned from those disparate data scales. This leads to a
scenario where the information pertinent to one client’s resolution
is forgotten when the network attempts to accommodate and learn
from the resolutions of others.

In addition, the waiting time is generally prolonged after adopt-
ing multi-scale training due to the disparity in the training data
volume and computational resources. It means that faster clients
waste more time waiting for slower ones. In particular, we deployed
the spatial federated learning system on a GPU server and an edge
platform comprising ten heterogeneous devices. We calculated the
transmitting time, training time, and waiting time separately. In
Fig. 2 (Left Part), waiting time and training time account for nearly
equal proportions, constituting the majority of the overall process
duration within the edge devices platform. However, our obser-
vations indicate that multi-scale training further exacerbates this
situation, as shown in Fig. 2 (right part). In particular, we observed
a significant increase in the average waiting time, which rose from

Add Multi-Scale
Training

Figure 2: Adopting the spatial multi-scale training, the per-
centage of waiting time increased in GPU and edge devices.

39% to 46% and 46% to 60% upon adopting the multi-scale train-
ing approach in our GPU and edge platform (demonstrated by red
arrow), respectively.

2.3 Summary
Tomeet the dynamic requirements during inference, our motivation
study underscores the potential that data resolution offers to mod-
els, enabling a significant trade-off between accuracy and latency.
However, it was observed that direct inference on different data
resolutions under conventional training can drastically undermine
accuracy due to resolution discrepancy between training and in-
ference. This observation motivated the exploration of multi-scale
training, treating training and inference as two closely coupled
stages. Nevertheless, several challenges need to be addressed for
integrating multi-scale training into FL due to accuracy drop and
potential training inefficiency.

3 PROBLEM FORMULATION AND OVERVIEW
3.1 Problem Formulation
Without loss of generality, we assume there are𝑁 clients involved in
a FL system, and the training data owned by client 𝑖 isD𝑖

𝑡𝑟𝑎𝑖𝑛
, where

𝑖 ∈ {1, 2, ..., 𝑁 }. Consistent with prevalent data heterogeneity, the
distribution ofD𝑖

𝑡𝑟𝑎𝑖𝑛
differs among clients. Moreover, the compute

capability C𝑖
𝑐𝑜𝑚𝑝 and the communication bandwidth C𝑖

𝑐𝑜𝑚𝑚 of each
client may be distinct. We use r = {𝑟 𝑗 }𝐽

𝑗=1 to denote the set of 𝐽
different frame resolutions, 𝜃 to denote the obtained model weight
from federated training. Given an inference latency requirement
𝑇 , our objective is to obtain a robust model 𝜃 , which can achieve
accuracy as high as possible for each client by choosing a proper
resolution 𝑟 𝑗 for input samples while minimizing the training time.
Note that during inference, the latency requirement of a given task
is dynamic due to various reasons, such as unpredictable system
delays and resource contention from other preemptive tasks with
higher priority. We assume that the data of the highest resolution
that neural network models need can be stored in all devices since,
in practice, the resolution of cameras (e.g., 720p, 1080p) usually
meets (and even exceeds) the resolution required by the neural
network model (e.g., 64 × 64 or 224 × 224).

3.2 System Overview
The goal of ArtFL is to exploit the frame resolution as a knob to
meet the requirement of real-time performance and accuracy in
the dynamic inference stage while keeping the training phase as
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Figure 3: Pipeline of ArtFL. The server aggregates clients’ models and computes the probability vector for different resolutions
and data dropping ratios for each client. The clients execute the local update, guided by the probability vector and the ratio.

compute-efficient as possible. The core ideas of ArtFL includemulti-
scale training, which enables flexibility in the inference, and frame
resolution selection ensures real-time performance, which enhances
the accuracy performance during the inference. Meanwhile, we
propose dynamic data dropping in the training stage to decrease
the waiting time.

The overall system pipeline of ArtFL is shown in Fig. 3. First,
clients check in to the server and then receive the global model
and the metadata from the server, including the probabilities on
different resolutions and the dropping ratio for training data. Next,
guided by the metadata, clients locally update the received global
model using multi-scale training with the clipped dataset. Then,
once the local training is finished, clients upload the well-trained
model and report the training time consumption and loss. Last,
the server aggregates the model and calculates the metadata for
each client for the following FL round. Each communication round
consists of the above steps until convergence.

We give a brief illustration of multi-scale training and dynamic
data dropping. For multi-scale training, we sample different res-
olutions following a certain probability vector on every client in-
spired by a combination of temporal and spatial multi-scale train-
ing mentioned in Sec. 2.2. This enables each client to extract the
scale-invariance knowledge and let the server easily aggregate such
knowledge. Notably, the acquisition of the probability vectors is
based on the training loss of each client, which is an indicator of
local data utility [32]. Moreover, to avoid the long waiting time
for stragglers and to speed up the federated training, slow clients
will drop some data. The data dropping ratios for all clients are
jointly coordinated by the server on the basis of their training time
prediction. The details are in Sec. 4.1. In the inference, the core idea
of optimal frame resolution selection is to select the resolution with
similarity between two adjacent frames for each frame. We realized
that only the keyframe (with a small similarity) should be assigned
the most significant resolution. Note that in ArtFL, the training and
inference processes are not optimized jointly. In other words, the

techniques applied in the training and inference stages are indepen-
dent of each other. We mainly consider the training and inference
together since we aim to introduce dynamic optimization to the
inference stage. To accomplish this, we employ a data-utility-based
multi-scale training approach to link the two stages.

4 DESIGN OF ARTFL
4.1 Data-Utility-Based Multi-Scale Training
To enable the flexibility of dynamic requirements in inference time,
we consider the training and inference as two closely coupled stages
and then propose data-utility-based multi-scale training.

As mentioned in Sec. 3.1, there are 𝐽 possible frame resolutions
for the data on each client. For each client 𝑖 , we use a vector p𝑖 ∈ R𝐽
to denote the probability of selecting every resolution during the
local training. In order to obtain the suitable probability vector p𝑖 ,
we collect the average per-sample training loss 𝐿𝑖 for each client:

𝐿𝑖 =
1

|D𝑖
𝑡𝑟𝑎𝑖𝑛

|

∑︁
(𝑥,𝑦) ∈D𝑖

𝑡𝑟𝑎𝑖𝑛

𝑙𝑜𝑠𝑠 (𝑥,𝑦) (1)

Intuitively, 𝐿𝑖 indicates the difficulty level of the data on client
𝑖 , where clients with larger loss may include more hard examples
and thus should be assigned with a higher probability of the large
resolution to extract more detailed features for model improvement.
To this end, we let the server collect 𝐿𝑖 from all clients to form
𝐿 = {𝐿𝑖 }𝑁

𝑖=1. We then sort 𝐿 and obtain the ranking of each client.
We can assign each client a p𝑖 from a pre-defined ordered pool Q
based on the ranking. The higher the loss, the vector with a higher
probability towards a large resolution will be assigned. We note that
𝐿𝑖 can be easily logged during training, and thus, the acquisition of
{p𝑖 }𝑁𝑖=1 incurs negligible overhead.

In practice, instead of using a pool with a size that equals to the
number of clients, we can construct the pool Q with only 𝑆 levels
of probabilities, i.e., Q = {q𝑠 }𝑆𝑠=1, where q𝑠 ∈ R𝐽 and 𝑆 < 𝑁 . For
simplicity, the probability vectors of𝑁 clients can be equally divided
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Figure 4: Illustration of data-utility-based multi-scale train-
ing and numbers indicate the client indices.

into 𝑆 preference levels based on the loss ranking, and several clients
within the same level may share the same probability vector. For
instance, consider the case shown in the upper part of Fig. 4, where
𝐽 = 3 and 𝑆 = 3 (i.e., three resolutions and three preference levels).
A typical pool is Q = [(0.2, 0.2, 0.6), (1/3, 1/3, 1/3), (0.6, 0.2, 0.2)],
including three probability vectors. The first vector of Q is (0.2,
0.2, 0.6), refers to a probability of 0.6 to choose the large resolution
while 0.2 to choose the small and medium resolution during the
training and is assigned to clients with the loss belonging to the
top one third (high). Note that the number of selectable resolutions
can increase, such as offering 5 or 10 distinct options of Q.

Note that our design is based on several insights. First, we let the
samples with different resolutions appear alternately during local
training to ensure that each client gradually learns scale-invariant
knowledge. Second, we design a global probability vector assign-
ment scheme that allows the clients that currently accumulate a
larger loss to be paid more attention (i.e., assigned with a higher
probability on large resolution) in future training. In addition, com-
pared with the cross-device multi-scale training approach intro-
duced in Sec. 2.2, our design alleviates the “ non-i.i.d. size issue”. It
allows the learned scale-invariant features by each client to effec-
tively be aggregated among a series of FL rounds. It is worth noting
that in ArtFL obviates the necessity for storing multiple resolutions
about the same objects.

4.2 Optimal Frame Resolution Selection
In Sec. 4.1, we enable desirable flexibility to model for achieving
dynamic real-time requirements during inference. In the following,
we propose optimal frame resolution selection to choose the optimal
resolution for each frame according to the similarity of two adjacent
frames.

First, for any client, we need to obtain the optimal strategy 𝑆 =

{𝑠𝑖 }𝐽1 , where 𝑠𝑖 represents the probability of choosing different
resolutions under a dynamic time requirement 𝑇 . For example, the
probability of choosing the largest resolution (i.e., 𝑠 𝐽 ) under a tight
time budget could be small. In contrast, the probability of choosing
the smallest resolution (i.e., 𝑠1) might be relatively large. In the
following, we formulate this problem into a linear optimization:

max
𝑠𝑖 ∈𝑆

𝐽∑︁
𝑖

𝑎𝑖𝑠𝑖 , 𝑠 .𝑡 .

{ ∑𝐽
𝑖
𝑡𝑖𝑠𝑖 ≤ 𝑇∑𝐽

𝑖
𝑠𝑖 = 1

where, 𝑡𝑖 denotes the inference time of 𝑖𝑡ℎ resolution, and 𝑎𝑖
is the accuracy of 𝑖𝑡ℎ resolution in the training set. To solve this
optimization problem, we utilize the simplex method [43] with an
average time complexity of 𝑂 ((N +M) ∗ N). Here, N represents
the number of variables, and M denotes the number of inequality

constraints. The search space is limited in practice since N and M
are small.

Second, with the strategy 𝑆 , we need to determine the specific
resolution for each frame. To this end, we use the structural simi-
larity index measure (SSIM) metric [55] for adjacent two frames 𝑥𝑘
and 𝑥𝑘+1. Let 𝑝 ∈ R𝐽 denote the probability of selecting resolution
in frame 𝑥𝑘 , we have

𝑝 =

{
[0, · · · , 1] ∈ R𝐽 , SSIM(𝑥𝑘 , 𝑥𝑘+1) ≤ 𝛽

𝑆 , 𝑒𝑙𝑠𝑒,
(2)

where 𝛽 is a hyperparameter defined in advance. We use 𝛽 = 0.3
in this paper. As shown in Eq. 2, we use the highest resolution
when the two adjacent frames have a huge difference. For example,
suppose that 𝐽 = 3 and SSIM(𝑥𝑘 , 𝑥𝑘+1) ≤ 𝛽 , 𝑝 = [0, 0, 1]. To satisfy
the time constraint, we need to update the optimal strategy 𝑆 , shown
as follows. For each element 𝑠𝑖 ∈ 𝑆 , 𝑆 ∈ R𝐽 , we have

𝑠𝑖 =

{
(𝑠𝑖 −𝑇 )/(1 −𝑇 ), 𝑖 = 𝐾, 𝑠𝑖 ≥ 𝑇
𝑠𝑖/(1 −𝑇 ), 𝑒𝑙𝑠𝑒,

(3)

where 𝐾 is the index of the latest selected resolution. The core
idea of optimal frame resolution selection is that SSIM presents the
changes between keyframes needing higher resolutions.

4.3 Latency-Based Dynamic Data Dropping
Model training efficiency plays a critical role in FL due to the online
nature of training and regular model updates in applications [4, 42].
As demonstrated in Sec. 2, the waiting time is prolonged in the
training stage due to the multi-scale training. This observation
motivated us to propose latency-based dynamic data dropping aims
to reduce the training duration.

4.3.1 Training time estimation. The local training time of each
client is mainly influenced by the number of samples and the taken
resolution probabilities. Instead of a learning-based model, we ac-
complish the latency prediction using an intuitive approach that
utilizes the measured latency of the last round as a reference. Our
insight is that the last round of training time can be obtained with-
out any extra effort, and based on which, the latency of the next
round can be easily inferred after the transformation:

𝑇
(𝑖,𝑡 )
𝐸_𝑇𝑟𝑎𝑖𝑛 =

p(𝑖,𝑡 ) ⊗ I
p(𝑖,𝑡−1) ⊗ I

· 1
Dr(𝑖,𝑡−1)

·𝑇 (𝑖,𝑡−1)
𝑇𝑟𝑎𝑖𝑛

, (4)

where the superscript 𝑖 and 𝑡 refer to the index of the client and
the global FL round, respectively.𝑇 (𝑖,𝑡 )

𝐸_𝑇𝑟𝑎𝑖𝑛 and𝑇 (𝑖,𝑡−1)
𝑇𝑟𝑎𝑖𝑛

denotes the
estimated training time and measured training time of the i𝑡ℎ client
in round (𝑡) and (𝑡 − 1), respectively. p(𝑖,𝑡 ) denotes the probability
vector, and I = r2 ∈ R𝐽 denotes the compute intensity level of
using different resolutions1, where r is defined in Sec. 3.1. The dot
production of the probability vector and the compute intensity
represent the computational overhead. 𝐷𝑟 (𝑖,𝑡−1) the corresponding
data dropping ratio, which will be defined in Eq. (6), and ⊗ the dot
product operation. Notably, the obtained time estimation 𝑇 (𝑖,𝑡 )

𝐸_𝑇𝑟𝑎𝑖𝑛
is under the assumption that the full local dataset on client 𝑖 is

1Here, the quadratic relationship is because the compute overhead of convolu-
tional layer is quadratic to the image size.
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used in the next round. Utilizing this estimation, the server can
dynamically adjust the data dropping ratio for clients to prevent
prolonged local updates, reducing the waiting time.

4.3.2 Dynamic data clipping. As the computing power and the
number of possessed data on the client vary a lot, the client that
first finishes the local training may have to wait for the last one
for a while, and our goal is to minimize waiting time as much as
possible while preserving performance.

Thus, we propose dynamic data clipping. Each client must dis-
card some data, with longer training duration mandating more
deletions. Our insight is that as the majority of clients have com-
pleted the local training, the averaged model update will not be
substantially changed by a few stragglers’ model updates, and dy-
namic data dropping will not significantly influence the model
accuracy.

However, the networking situation is also heterogeneous across
mobile devices, leading us to consider the communication time in
the training phase. In particular, we estimate the transmitting time
as follows:

𝑇
(𝑖,𝑡 )
𝐸_𝐶𝑜𝑚𝑚

= 𝛾𝑇
(𝑖,𝑡−1)
𝐸_𝐶𝑜𝑚𝑚

+ (1 − 𝛾)𝑇 (𝑖,𝑡−1)
𝐶𝑜𝑚𝑚

(5)

where, 𝑇 (𝑖,𝑡−1)
𝐸_𝐶𝑜𝑚𝑚

and 𝑇 (𝑖,𝑡−1)
𝐶𝑜𝑚𝑚

denote the estimated communi-
cation time and the real one in round (𝑡 − 1) of the i𝑡ℎ client,
respectively. 𝛾 is a hyper-parameter controlling the momentum
effect of previous communication time, and we use 𝛾 = 0.01 in this
work.

In the following, we use a dropping function 𝐷𝑟 to determine
how much percentage of data should be dropped:

𝐷𝑟 (𝑖,𝑡 ) =

{
(𝑇 (𝑖,𝑡 )
𝐸

−𝑇 𝑡 )/𝑇 (𝑖,𝑡 )
𝐸

,𝑇
(𝑖,𝑡 )
𝐸

> 𝑇
𝑡

𝛼 ,𝑇
(𝑖,𝑡 )
𝐸

< 𝑇
𝑡 (6)

where 𝑇 (𝑖,𝑡 )
𝐸

= 𝑇
(𝑖,𝑡 )
𝐸_𝐶𝑜𝑚𝑚

+𝑇 (𝑖,𝑡 )
𝐸_𝑇𝑟𝑎𝑖𝑛 . It denotes the predicted time

of client 𝑖 in round 𝑡𝑡ℎ round. 𝑇 𝑡 denotes the average estimated
time among all clients. 𝛼 is the basic dropping rate, where we select
𝛼 = 0.1 in this work. As can be seen, we let clients whose predicted
training time is above the average perform the data clipping, and
force their new expected time to be no longer than the original
average. Notably, this component plays a pivotal role in enhancing
the efficiency of the federated learning training process, particularly
when some clients have substantially lower computing capabilities
than others.

Note that in ArtFL a high-loss client is more likely to obtain a
higher resolution in a round, but this does not imply that it will
drop more data in the next round since the server determines the
dropped ratio on each client by considering both the per-client data
utility and running efficiency. The worst-case scenario involves
clients dropping a significant amount of data, which can lead to
difficulties in achieving convergence. However, ArtFL can mitigate
this issue by leveraging knowledge from other clients. In particular,
the server aggregates the knowledge distilled from all participating
clients. This aggregation process has the potential to compensate
for information that may be lost due to data omission on clients. The
weights shared across the network encapsulate features within the

Algorithm 1 ArtFL

Require: Local dataset D𝑖
𝑡𝑟𝑎𝑖𝑛

; Number of Clients 𝑁
1: for each round 𝑡 do
2: Sample clients 𝑃𝑡 ⊆ [𝑁 ]
3: Obtain p(𝑖,𝑡 ) , for all 𝑖 ∈ 𝑃𝑡 ⊲ Sec. 4.1
4: Predict 𝑇 (𝑖,𝑡 )

𝐸_𝑇𝑟𝑎𝑖𝑛 , for all 𝑖 ∈ 𝑃
𝑡 ⊲ Sec. 4.3.1

5: Predict 𝑇 (𝑖,𝑡 )
𝐸_𝐶𝑜𝑚𝑚

, 𝑇 (𝑖,𝑡 )
𝐸

for all 𝑖 ∈ 𝑃𝑡 ⊲ Sec. 4.3.2
6: Obtain 𝐷𝑟 (𝑖,𝑡 ) , for all 𝑖 ∈ 𝑃𝑡 ⊲ Sec. 4.3.2
7: Server transmits 𝜃 , p𝑖 , 𝐷𝑟 (𝑖,𝑡 ) to selected clients
8: for each client 𝑖 ∈ 𝑃𝑡 , and in parallel do
9: Random clip D𝑖

𝑡𝑟𝑎𝑖𝑛
with ratio 𝐷𝑟 (𝑖,𝑡 ) for D̂𝑖

𝑡𝑟𝑎𝑖𝑛

10: Multi-scale training with p𝑖 on dataset D̂𝑖
𝑡𝑟𝑎𝑖𝑛

11: Upload the updated model 𝜃𝑖 , the measured training
time 𝑇 (𝑖,𝑡 )

𝑇𝑟𝑎𝑖𝑛
, the communication time 𝑇 (𝑖,𝑡 )

𝐶𝑜𝑚𝑚
, and the loss 𝐿𝑖

to the server
12: Model Aggregation: 𝜃 =

∑
𝑖∈𝑃𝑡

| D̂𝑖
𝑡𝑟𝑎𝑖𝑛

|∑
𝑖 | D̂𝑖

𝑡𝑟𝑎𝑖𝑛
|
𝜃𝑖

13: Adopting optimal frame resolution selection with different
resolutions in inference. ⊲ Sec. 4.2

semantic space, effectively representing the collective knowledge
acquired during the training process.

4.4 Put It All Together
We now summarize ArtFL which is presented in Algorithm 1.
(1) Line 3: On the server, acquisition of p𝑖 is based on the ranking-
based scheme introduced in Sec. 4.1.
(2) Line 4-6: Using p𝑖 , the server estimates the local training time
𝑇
(𝑖,𝑡 )
𝐸

for each client assuming the full local dataset was used, and
then estimates the commutation time 𝑇 (𝑖,𝑡 )

𝐸
, and in the next calcu-

lates 𝐷𝑟 (𝑖,𝑡+1) .
(3) Line 7: Model and metadata are downloaded from the server to
the client.
(4) Line 8 - Line 12: Every selected client performs probabilis-
tic multi-scale training based on the vector p𝑖 using the clipped
datasets. Lastly, the updated model will be sent to the server for ag-
gregation, similar to the conventional federated learning approach.
(5) Line 13: Once obtain the aggregated model 𝜃 , optimal frame
resolution selection is adopted in inference stage.

5 EXPERIMENTS SETUP
5.1 Baselines
We identified two groups of baseline methods for comparison.
The first group pertains to FL and encompasses FedAvg [41], Fed-
Prox [35], FedDyn [1], and BalanceFL [50]. The second group
focuses on on-device inference systems like FlexDNN [12] and
RANet [57], explained in Sec. 6.2. The main reason for selecting
FlexDNN and RANet is their dynamic behavior during inference.
In contrast, other state-of-the-art (SOTA) on-device inference tech-
niques, e.g., quantization or pruning, only speed up the inference
time without considering the dynamics in our setting.
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• FedAvg [41]: the standard FL approach, where all clients use
the conventional cross-entropy loss for training.

• FedProx [35]: an FL approach that tackles the heterogeneity
issues among clients. Compared with FedAvg, a 𝐿2 regularization
term is added to restrict the distance between the local model
and the global model.

• FedDyn [1]: another state-of-the-art FL solution to the hetero-
geneity issue. It uses a dynamic regularizer for each device at
each round, so that the optimal model for the regularized loss is
in conformity with the global empirical loss.

• BalanceFL [50]: A state-of-the-art FL framework tackles the
data imbalance heterogeneity issue among clients. We include
BalanceFL as one of the baselines to investigate whether its
knowledge inheritance technique could also be effective.

• Local Training: the model trained using only the local data at
each node, with a traditional cross entropy loss.

• Centralized Training without Multi-Scale Training (CT W.
O. MST): the model trained on an overall dataset aggregating all
distributed data, using the traditional cross-entropy loss. Note
that our experiments are under the generic FL setting.

• Centralized Training with Multi-Scale Training (CT W.
MST): Compared to CT W. O. MST, the difference is that adding
the multi-scale training [16] in centralized training, which can
be regarded as the upper bound of our setting.

5.2 Implementation
We implement a prototype of ArtFL on a real edge device and a
cloud server platform. Notably, we use the edge platform to evalu-
ate three real-world testbeds while using the more powerful cloud
server to evaluate three public datasets for system scalability. Ta-
ble 1 summarizes the setting. The cloud server is equipped with
Intel(R) Core(TM) i9-9820X CPU and 4 NVIDIA A100 GPUs. On the
real edge device platform, we use a personal computer (only used
for aggregation) as the server and NVIDIA Jetson Orin, AGX Xavier,
Xavier NX, TX2, and Nano as clients. The server and nodes are con-
nected within an intranet via a TP-LINK Switch (TL-SG2016K), as
shown in Fig. 5. Note that we only present the partial key compo-
nents of our hardware testbed for simplicity. For the cloud server,
we create one process for each client to simulate multiple clients in
federated learning and let another process serve as a server, which
executes the node selection and model aggregation. We summarize
the settings of these two platforms in Table 1. We create one process
for each client to complete the local training using GPU.

The deep learning component of our implementation is based on
PyTorch. For most tasks, we utilize ResNet-8 [50], which consists
of 7 convolutional blocks and a single fully connected layer, while
we employ ResNet-18 [50] in the smart health testbed,. It is worth
noting that we incorporate an adaptive pooling layer to accommo-
date various resolutions in the input data. We set the maximum
global round to 200 for all federated learning methods with five
local epochs each round. SGD optimizes local updates with a learn-
ing rate of 0.005 and a momentum of 0.9. The local batch size is
64, and we present the average results of the final five epochs in
each baseline. For FedProx, the hyper-parameter 𝜇 to control the
regularization strength is set to 0.05.

Figure 5: Hardware Setup.

Table 1: A summary of two platforms.

Platform Details

Edge Device
Platform

Jetson Orin * 1. Cores of CPU/GPU: 12/1792. DRAM: 32G
AGX Xavier * 3. Cores of CPU/GPU: 8/512, DRAM: 16G
Xaiver NX * 18. Cores of CPU/GPU: 6/384. DRAM: 8G.
Jetson TX2 * 6. Cores of CPU/GPU: 6/256. DRAM: 8G.
Jetson Nano * 2. Cores of CPU/GPU: 4/128. DRAM: 4G.

Cloud Sever CPU: i9-9820X. GPU: NVIDIA A100 * 4. DRAM: 512G.

6 REAL-WORLD TESTBED EVALUATION
6.1 Two Real-world FL Testbeds
Here, We present our smart vehicle and smart health FL testbeds.2

• Smart Vehicle Testbed. In this testbed, we simulate an au-
tonomous driving application where the task is to recognize the
traffic signs in real time (≥ 30 fps). As shown in Fig 6(a), the F1/10
Autonomous Vehicle [50] is equipped with a camera, Arduino,
and an embedded platform (NVIDIA Xavier). This testbed com-
prises 15 classes, including "No Driving," "No Right Turn", "No
U-Turn", "No Entry", "No Parking", "Vehicle Driving", "Vehicle
Parking", "Keep Straight", "Bus Lane", "Turn Left", "Turn Right",
"Pedestrian Crossing", "Unknown". In total, we collected 25,593
RGB images with a resolution of 640× 480 from different camera
angles (left, right), camera heights (high, low, medium), different
backgrounds (indoor and outdoor), and light intensity (strong or
weak). We use the Dirichlet function to assign these samples to
24 smart cars (clients).

• Smart Health Testbed. This testbed simulates the scenarios
of patient monitoring of two places: the hospital (sick room)
and home (bedroom), where the key difference between the two
places is the camera’s positions and views, as shown in Fig. 6. We
expect the system to detect patients’ calls for assistance in time
(5 fps) as long as patients make a simple gesture such as raising
their right hand. This function can detect the patient’s cerebral
thrombosis if they are not sleeping supine to avoid exacerbating
poor blood flow. In each room, the bed has three different heights
(high, medium, and low). Three RGB cameras (Vzense DCAM710)

2The data collection was approved by IRB of the authors’ institution.
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(a) Smart Vehicle Testbed.
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(b) Smart Health Testbed.
Figure 6: Two Real-world FL Testbeds.

are placed at three different angles (left, middle, and right). Dur-
ing the data collection, we recruited 21 volunteers, and 31,010
RGB images with a resolution of 480 × 360 were collected. The
system is trained to recognize eight different actions: "raising the
left/right hands", "lying on the bed", "sitting on the bed", "sitting
on the bedside", "lying on the left/right side", and "standing on
the bedside". During the training, each human identity forms a
separate FL client.

6.2 Accuracy Comparisons under Time Bounds
Comparison with FL systems. We evaluate the accuracy perfor-
mance under different inference latency constraints of ArtFL and
other FL baselines. For the smart vehicle testbed, we define two
different levels of compute overloads. In spare time, only a ResNet-8
model is running for traffic sign recognition, while in peak time, an-
other pre-loaded Tiny-YOLO-v3 model is running as a background
task. Under both settings, we set the real-time deadline as 10, 20,
30ms (≥ 33 fps). We set the real-time deadline for the smart health
testbed as 0.14s, 0.18s, and 0.20s (≥ 5 fps). The main reason why
we use different time constraints since we want to simulate the
dynamics in real applications. Similarly, there are two real-time
deep learning tasks, e.g., patient action recognition and a back-
ground task for human falling detection. The results in Fig. 7 show
consistent patterns with both testbeds. Note that the x-axis of Fig. 7
refers to different task deadlines. In particular, we observe that
ArtFL performs well in both peak and spare time. When the time
bound is tight, baseline performance degrades considerably, while
ArtFL maintains relatively consistent performance thanks to the
multi-scale training.
Comparison with input-adaptive systems. We also compare
ArtFL with the following two adaptive inference frameworks in
the FL setting where the training is completed with FedAvg. We
follow the original hyperparameters settings in FlexDNN [12] and
RANet [57].

• FlexDNN [12]: an input adaptive DNN-based framework for effi-
cient inference with an early exit scheme. Note that in FlexDNN,
the input resolution is not changed, and early exit only depends
on the difficulty of the input image.

• RANet [57]: A multiple models (branches) framework for a
faster inference by adapting different resolution representations.
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(a) Vehicle testbed on NVIDIA Jetson Xavier.
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(b) Health testbed on NVIDIA Jetson Nano.

Figure 7: Left and Right part presents the accuracy compari-
son in Peak and Spare time, respectively.

Table 2: Accuracy Comparison under Real-Time Constraint.

Testbeds Runtime
Status FlexDNN[12] RANet[57] Ours

Smart Vehicle Peak 0.43 0.44 0.93
Smart Health 0.39 0.35 0.81

Smart Vehicle Spare 0.58 0.51 0.95
Smart Health 0.47 0.43 0.87

Low resolution is used for classifying “easy” inputs while “hard”
samples are used for high resolution.
As shown in Table 2, ArtFL outperforms both baselines by a large

margin under the time constraints. In particular, ArtFL achieves
above 94% and 85% accuracy in intelligent vehicles and health
testbeds, while the other two methods can only achieve less than
60%, which is not practical in our natural systems. The main reason
is that the data in the real world is not as clean as in public datasets,
with many hard examples, which is not friendly to this early exit
scheme and multi-branches-based method.
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Figure 8: Accuracy on two Real-World Testbeds.

6.3 Comprehensive Analysis of Accuracy and
System Performance

Here, we present the detailed accuracy of various baselines under
different inference sizes, shown in Fig. 8. We observe that all ap-
proaches tend to have a higher recognition accuracy in the large
size except local training due to the lack of multi-client cooperation
among three testbeds. Second, ArtFL consistently outperforms other
baselines in various settings. For example, in small size, ArtFL rela-
tively improves the accuracy with outperforms by 40.38%, 45.29%,
67.35%, 50.13%, and 71.20% over FedAvg, FedProx, FedDyn, Bal-
anceFL and Local training in smart vehicle testbed, respectively. It
also shows similar trends in smart health, showing the generality
of ArtFL. In addition, we observe that only the performance of
ArtFL can achieve over 90% in the middle size.

For the system performance, we evaluate the average waiting
time, which is the delay between the time of the fastest and slowest
client to complete local training, and the mean local update time
of all clients in each federated round, an indicator of the compute
overhead. As shown in Table 3, the average training time and mean
local update time show consistent trends with the result among
two testbeds, i.e., ArtFL outperforms other all baselines.

This result shows that ArtFL can effectively alleviate the strag-
gler issue. Moreover, we observe that the mean local update time
of our edge testbed is significantly longer than the one obtained
from the cloud server because the edge devices (e.g., Jetson Nano)
are much weaker than the server GPUs. Yet, our approach still
provides substantial improvement compared to baselines. Note that
the training time estimation is accurate with a 0.33% and 0.39%
error rate on average in our testbeds.

7 PUBLIC DATASETS EVALUATION
In this section, we evaluate ArtFL in a similar way with Sec. 6.3
on three public datasets (CIFAR10 [26], CIFAR100 [26], and Tiny-
ImageNet [27]). Note that experiments in this section are conducted
on the cloud server to validate the system’s scalability. Specifically,

Table 3: Average Waiting Time (Seconds) and Mean Local
Update Time (Seconds) on three FL Testbeds.

Testbed FedAvg FedProx FedDyn BalanceFL Ours
Average Waiting Time

Smart vehicle 156.43 164.43 169.51 211.62 110.92
Smart Health 226.51 231.10 234.88 301.61 131.79

Mean Local Update Time
Smart vehicle 134.52 139.21 141.23 197.83 101.21
Smart Health 351.23 376.41 371.96 534.24 227.35

Table 4: Average Waiting Time (Seconds) and Mean Local
Update Time (Seconds) of public datasets when 𝐷𝑖𝑟 = 0.1 and
0.3 distribution on the cloud server.

Dataset Dir. FedAvg FedProx FedDyn BalanceFL Ours
Average Waiting Time

CIFAR10 0.1 56.59 62.22 54.69 81.72 32.84
0.3 34.83 32.93 39.88 70.23 20.72

CIFAR100 0.1 15.56 16.55 20.80 41.08 14.29
0.3 19.87 23.37 18.57 107.50 19.17

Tiny 0.1 52.30 54.23 57.71 237.72 36.12
0.3 39.69 37.60 37.66 143.37 33.51

Mean Local Update Time

CIFAR10 0.1 84.91 92.12 82.52 129.93 55.84
0.3 101.75 97.53 95.28 172.56 60.64

CIFAR100 0.1 171.64 174.00 146.44 186.62 134.41
0.3 192.61 182.43 165.66 261.33 131.72

Tiny 0.1 138.95 147.43 150.93 459.92 103.82
0.3 138.33 147.64 156.66 569.13 101.72

the clients of the three datasets are 10, 100, and 50, respectively. We
use the same baselines mentioned in Sec. 5.1.

7.1 Accuracy and System Performance
First, the accuracy under two non-iid distributions (𝐷𝑖𝑟 = 0.1, and
0.3) are presented in Figure 9(a). Our approach outperforms other
FL approaches under both 𝐷𝑖𝑟 values in CIFAR10. For instance,
when 𝐷𝑖𝑟 = 0.1, our approach improved the absolute accuracy
of FedAvg from 57.30% to 61.67%, 50.1% to 60.40%, and 31.8% to
48.3% in the original, medium, and small sizes (32× 32, 24× 24, and
16 × 16, respectively). In addition, we evaluate the performance of
ArtFL on CIFAR100 (100 clients) and Tiny-ImageNet (50 clients),
which involve a larger number of clients and classes, respectively.
Figure 9(b) and Figure 9(c) show our results exhibit a consistent
trend with the experiments conducted on CIFAR10. For system
performance, we observe that ArtFL performs the best, as shown
in Table 4, compared to various baselines in both average waiting
time and mean local update time. Specifically, on average waiting
time, ArtFL only takes 32.84 seconds in the CIFAR10 dataset, yet the
FedAvg and BalanceFL take 56.59 and 81.72 seconds, respectively.
The results in mean local update time show the same trend, where
our approach decreases the mean local update time by up to 40%
compared to FedAvg. The above results show that ArtFL works well
in different data non-iid distribution, demonstrating the robustness
of distribution stragglers.

7.2 Ablation Studies
We present the ablation studies of ArtFL in Table 5, showing the
result when multi-scale training (MST ) and latency-based dynamic
data dropping (𝐷3) are disabled on the CIFAR10 dataset with 𝐷𝑖𝑟 =
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Figure 9: Accuracy comparison on three public datasets.

Table 5: Ablation studies.

𝑀𝑆𝑇 𝐷3 𝑂𝐹𝑅𝑆 𝑅𝑅𝑆
Accuracy

𝐷𝑖𝑟 = 0.1 𝐷𝑖𝑟 = 0.3
✓ ✓ ✓ × 63.19 80.35
✓ ✓ × ✓ 62.74 75.31

✓ ✓ × × 60.34 72.11
✓ × × × 54.30 66.31
× × × × 46.30 57.10

0.1 and 𝐷𝑖𝑟 = 0.3. Since the results on other datasets are similar,
we present an ablation study conducted on the CIFAR10 dataset
to evaluate the individual contributions of three key components,

Table 6: Comparsion in different Q and 𝛼 .
Accuracy Q1 Q2 𝛼 = 0 𝛼 = 0.05 𝛼 = 0.2
Small 0.59 0.62 0.63 0.64 0.62

Medium 0.65 0.71 0.72 0.73 0.74
Large 0.69 0.73 0.73 0.76 0.75

Multi-Scale Training (𝑀𝑆𝑇 ), Dynamic Data Dropping (𝐷3), and Op-
timal Frame Resolution Selection (𝑂𝐹𝑅𝑆). Note that the results in
comparing the 𝑀𝑆𝑇 and 𝐷3 are the average among the three reso-
lutions. Next, we follow the same constraint setting of the smart
vehicle and compare compared Optimal Frame Resolution Selec-
tion with the Random Resolution Selection (𝑅𝑅𝑆), which randomly
assigns resolutions to frames. The accuracy was evaluated under
two different 𝐷𝑖𝑟 conditions (0.1 and 0.3). When all components
were equipped, the system achieved peak accuracies of 62.11 and
72.33 for 𝐷𝑖𝑟 values of 0.1 and 0.3, respectively. In particular, the
removal of Dynamic Data Dropping led to a more significant per-
formance decrement, suggesting its substantial role in the system
performance. Note that we randomly drop the data in the training
process due to the information redundancy and keep the original
data distribution. Meanwhile, the elimination of Frame Resolution
Selection resulted in a nominal reduction in accuracy, indicating its
positive but non-critical contribution.

8 RELATEDWORK
Multi-Scale Training. Three different approaches have been pro-
posed for multi-scale representation learning. The first approach is
changing the input resolution by stochastic schemes [16, 56]. For
example, MixSize [16] uses an adaptive stochastic training scheme
to change the image size and the batch size in each optimization
step. TRD [56] utilizes shape consistency for higher computational
efficiency. However, these works can not be directly adopted to
edge applications due to huge batch sizes, high memory usage, and
a focus on centralized training. The second and third directions are
geometric-based and learning-based methods [40]. In geometric-
based methods, several solutions seek intrinsic geometric features
such as edge and contour information [10]. As for learning-based
methods, existing works focused on designing strategies of multi-
scale structures that determine features’ quality [18, 24, 33, 57].
For example, a multi-scale residual block [33] is proposed to force
neural networks to learn different scale information via different
kernel sizes. RANet [57] trains a hybrid network using different
scales and branches. However, such approaches incur considerable
additional compute overhead as the extra branches and varying
kernel sizes.
Efficient On-Device Inference. To achieve efficient on-device
inference, previous works are mainly focused on compressing the
well-trained model through quantization [14, 20, 30], pruning [7,
22, 23, 31], and heterogeneous models [5, 13, 15]. For example,
MobiSR [30] combines model compression techniques and a sched-
uler to achieve a desirable trade-off between image quality and
processing speed. PruneFL [22] uses adaptive and distributed pa-
rameter pruning to optimize the model size for efficient inference.
Moreover, FLAME [5] personalizes the model on heterogeneous
devices to achieve efficient inference. SplitGP [15] split the full
ML model into client-side and server-side components to accel-
erate device inference. TLFL [13] enables the on-board training
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of ML algorithms on IoT devices via transfer learning and Tiny-
ML techquine. Note that ArtFL can be easily combined with such
post-processing techniques. Another approach is to achieve effi-
cient inference using multi-models and an early exit scheme. For
example, Chameleon [21] dynamically changes the networks to
reduce the computation during inference based on the device com-
putation resources. Branchynet [52] uses early exit branches to
relieve the limitation in Chameleon, i.e., the constraint of multiple
independent model variants. Based on Branchynet, FlexDNN [12]
considers the intrinsic dynamics of videos and dynamically adapts
its model complexity to the difficulty levels of input frames. How-
ever, the aforementioned works only focus on centralized training
and can not be directly deployed to the FL scenario due to a lack of
consideration of the heterogeneity issues.
Heterogeneity Issues in FL. Heterogeneity issues can impact
model convergence and diminish training efficiency in FL. To ad-
dress this, the previous approach focuses on two key aspects, e.g.,
system heterogeneity and data heterogeneity. System Heterogene-
ity is primarily caused by the participating clients in heteroge-
neous computation and communication resources, leading to a cat-
astrophic dropping in training efficiency. To improve the training
efficiency, several approaches have been proposed, including knowl-
edge distillation (KD) [6, 19, 37], partial training (PT) [6, 17, 18],
client selection (CS) [29, 32, 46] and sample selection (SS) [2, 49].
In particular, KD-based methods aim to distillate a small (student)
model from the big (teacher) model, while PT-based methods aim
to reduce the computation by training subnets in each round. In
addition, CS-based and SS-based methods mainly focus on drop-
ping straggling clients and data points, respectively, to expedite
the training efficiency. As for data heterogeneity is also known as
non-i.i.d. data distribution caused by the data isolation in FL. There
are mainly two types of FL [3], e.g., generic FL and personalized
FL. Previous generic FL works such as FedAvg [41], FedProx [35],
Scaffold [25], FedDyn [1] aim to generate a signal model. Person-
alized FL [3, 46, 58], targets to learn a personalized model in each
client from meta-learning [36, 59] and multi-tasks learning tech-
niques [39, 51, 58]. ArtFL is a generic FL approach and hence can
easily work with the KD-, PT- and CS-, and SS-based methods, such
as Oort [29] and Fedbalancer [49]. ArtFL optimizes the training
efficiency in the sample level, which is orthogonal to the aforemen-
tioned methods.

In summary, to the best of our knowledge, ArtFL is the first study
that adapts the multi-scale training to enable efficient inference on
edge devices while addressing the heterogeneity issues in FL which
can also improve the federated training efficiency.

9 DISCUSSION
More Complex Vision Tasks. The idea of ArtFL has the potential
to be applied in various complex tasks. For instance, object detec-
tion tasks can obtain harnessing information by spanning multiple
scales, ArtFL could substantially enhance the performance and
accuracy of existing object detection algorithms. This multi-scale
synthesis is poised to offer a more nuanced understanding of the
visual data, thereby enriching the algorithm’s ability to identify
and classify objects with greater precision. However, the imple-
mentation of ArtFL is not without challenges. ArtFL requires to

re-scale input to meet dynamic demands, which is not friendly for
the low-resolution input or input with smaller objects. Such inputs
struggle to adapt and maintain their integrity after the re-scaling
process, potentially leading to a loss in detail or a diminished ability
to recognize smaller objects. To address this limitation, a promis-
ing direction is selectively applying re-scaling operations and we
can conserve the fidelity of the smaller or low-resolution elements
while still benefiting from the advantages of multi-scale processing.
Joining/leaving of Clients. ArtFL accommodates the dynamic
participation of clients, allowing for the seamless integration of
new clients and the unobtrusive departure of existing ones. This
level of flexibility, however, ushers in a set of sophisticated chal-
lenges, particularly evident in the phenomenon of knowledge loss
that occurs when clients withdraw from the system. When clients
leave, their unique contribution to the collective learning experi-
ence is at risk of being lost. This loss of information, or knowledge
missing, as clients exit, poses a significant hurdle. It could poten-
tially undermine the robustness of the system and the quality of
the insights gleaned from it. The implications of such knowledge
attrition may present a valuable direction for future research. Such
research would be invaluable in fortifying the resilience of dynamic,
client-based systems against the inevitable shifts in participant en-
gagement, ensuring that the collective intelligence grows and is
preserved over time.
Future Directions. Firstly, ArtFL can be extended to asynchronous
FL systems. Although asynchronous FL systems can potentially
reduce waiting time during training, they face challenges in model
convergence because the slower clients may not upload their knowl-
edge in time. ArtFL can address this issue by speeding up the slower
clients’ training duration. Next, ArtFL can be scaled to a larger num-
ber of clients in different applications. Due to the many co-running
tasks in various applications, additional considerations must be
considered in the optimal frame selection such as considering the
concurrent tasks to design a more fine-grained frame selection
framework. Lastly, as ArtFL primarily deals with data types rich in
structured visual information like images and videos, we hope to
extend ArtFL to other modalities with sequential data structures,
such as speech or IMU data.

10 CONCLUSION
This paper proposes ArtFL, a novel FL framework designed to sup-
port dynamic inference requirements via data-utility-based multi-
scale training, optimal frame resolution, and dynamic data drop-
ping. Extensive experiments show that ArtFL delivers significant
improvement over state-of-the-art baselines across public datasets
and two real-world testbed. In the future, we will extend ArtFL to
other data modalities and more complex tasks.
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